红黑树
阅读数:105 评论数:0
跳转到新版页面分类
算法/数据结构
正文
红黑树(RBT)的定义:它或者是一颗空树,或者是具有一下性质的二叉查找树:
1.节点非红即黑。
2.根节点是黑色。
3.所有NULL结点称为叶子节点,且认为颜色为黑。
4.所有红节点的子节点都为黑色。
5.从任一节点到其叶子节点的所有路径上都包含相同数目的黑节点。
所有性质1-5合起来约束了该树的平衡性能--即该树上的最长路径不可能会大于2倍最短路径。为什么?因为第1条该树上的节点非红即黑,由于第4条该树上不允许存在两个连续的红节点,那么对于从一个节点到其叶子节点的一条最长的路径一定是红黑交错的,那么最短路径一定是纯黑色的节点;而又第5条从任一节点到其叶子节点的所有路径上都包含相同数目的黑节点,这么来说最长路径上的黑节点的数目和最短路径上的黑节点的数目相等!而又第2条根结点为黑、第3条叶子节点是黑,那么可知:最长路径<=2*最短路径。一颗二叉树的平衡性能越好,那么它的效率越高!显然红黑树的平衡性能比AVL的略差些,但是经过大量试验证明,实际上红黑树的效率还是很不错了,仍能达到O(logN)。
1、插入操作
由于性质的约束:插入点不能为黑节点,应插入红节点。因为你插入黑节点将破坏性质5,所以每次插入的点都是红结点,但是若他的父节点也为红,那岂不是破坏了性质4?对啊,所以要做一些“旋转”和一些节点的变色!另为叙述方便我们给要插入的节点标为N(红色),父节点为P,祖父节点为G,叔节点为U。下边将一一列出所有插入时遇到的情况:
(1)该树为空树,直接插入根结点的位置,违反性质1,把节点颜色有红改为黑即可。
(2)插入节点N的父节点P为黑色,不违反任何性质,无需做任何修改。
(3)N为红,P为红,(祖节点一定存在,且为黑,下边同理)U也为红,这里不论P是G的左孩子,还是右孩子;不论N是P的左孩子,还是右孩子。
- 把P、U改为黑色,G改为红色
- 需把G作为起始点,即把G看做一个插入的红节点继续向上检索----属于哪种情况,按那种情况操作~要么中间就结束,要么知道根结点
例子(插入4节点):
变化后:
(4)N为红,P为红,U为黑,P为G的左孩子,N为P的左孩子(或者P为G的右孩子,N为P的右孩子;反正就是同向的)。
- P、G变色,P、G变换即左左单旋(或者右右单旋),结束。
变换后P的位置就是当年G的位置,所以红P变为黑,而黑G变为红都是为了不违反性质5,而维持到达叶节点所包含的黑节点的数目不变
例子:
变换后:
(5)N为红,P为红,U为黑,P为G的左孩子,N为P的右孩子(或者P为G的右孩子,N为P的左孩子;反正两方向相反)。
- 当前节点的父节点做为新的当前节点,以新当前节点为支点左旋。,颜色不变;然后就变成了情形4的情况,按照情况4操作,即结束。
例子:
变换后:
2、删除操作
待续。。