数学中e常数的理解

阅读数:180 评论数:0

跳转到新版页面

分类

数学

正文

$\pi$代表了圆的周长与直径之比。简单说,e就是增长的极限,它的含义是单位时间内,持续的翻倍增长所能达到的极限值。

举个例子:

假定有一种单细胞生物,它每过24小时分裂一次。我们可以写出一个增长数量的公式:$2^x$

上式中的x就表示天数。这种生物在x天的总数,就是2的x次方。

我们继续假定:每过12个小时,也就是分裂进行到一半的时候,新产生的那半个细胞已经可以再次分裂了。 因此,一天24个小时可以分成两个阶段,每一个阶段都在前一个阶段的基础上增长50%。

当这一天结束的时候,我们一共得到了2.25个细胞。其中,1个是原有的,1个是新生的,另外的0.25个是新生细胞分裂到一半的。

很自然地,如果我们进一步设想,这种分裂是连续不断进行的,新生细胞每分每秒都具备继续分裂的能力,那么一天最多可以得到多少个细胞呢?

当n趋向无限时,这个式子的极值等于2.718281828...。

这个值是自然增长的极限,因此以e为底的对数,就叫做自然对数。

 




相关推荐

一、几何 1、直线没端点,没法有长度,可以无限延伸。 2、射线只有一个端点,没有长度,可以无限延伸,并且有方向。 3、线段有两个端点,可以测量长度。 4、两条直线相交成直角时,这两条直线叫做互相垂直,

第一章:实数 一、实数的分类

第一章:线段、角、相交线、平行线 一、直线:直线是几何中不加定义的基本概念,直线的两大特征是“直&rdquo

第一次数学危机(无理数的发现) 毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家. 他曾创立了一个合政治-学术-宗教三位一体的神秘主义派别: 毕达歌拉斯学派. 由毕达歌拉斯提出的著名命题"万物皆数"

数学发展具有阶段性,因此研究者根据一定的原则把数学史分成若干时期. 目前学术界通常将数学发展划分为以下五个时期: 数学萌芽期(公元前600年前) 初等数学时期(公元前

加减 a+b=$a+b$, a-b=$a-b$,  a\times b=$a\times  b$, a\div b=$a\div b$ a\cdo

一、问题描述 在漆黑的夜里,甲乙丙丁共四位旅行者来到了一座狭窄而且没有护栏的桥边。如果不借助手电筒的话,大家是无论如何也不敢过桥去的。不幸的是,四

1、基础与哲学  为了阐明数学基础,数学逻

$1+2+3+...+n=\dfrac{n(n+1)}{2}$ $1^2+2^2+...+n^2=\dfrac{n(n+1)(2n+1)}{6}$ 这个公式有两种证明

$A\Rightarrow (A\vee B)$ 附加律 $(A\wedge B)\Rightarrow A$ 化简律 $(A \to B)\wedge A\Righ